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Précis. We delineate work in progress supporting an approach to the
categorical semantics of (comonadic, adjoint, ...) modal dependent
type theory based on the notion of a (weak) morphism of natural
models [15]. In particular, we suggest as a model for the comonadic
operator of [22] a notion of Cartesian comonad on a natural model.
We also introduce the notion of a geometric morphism of natural
models, and use this to interpret (dependent analogs of) the adjoint
operators of [4].

1 Introduction

Dependent type theories with modal operators (that is, type operators1) date to
at least the 2000s [3] [14], and have become a subject of intense investigation in
homotopy type theory [24]. The categorical semantics of such systems remains
underexplored, however.
We pursue an approach to the categorical semantics of modal dependent

type theory within the framework of natural models, in particular highlighting
the role of morphisms of natural models. Natural models were developed [2]
as an equivalent, category-theoretic formulation of categories with families
(CwFs) [8], which provide a popular categorical semantics for dependent type
theory. The notion of a weak morphism of natural models is introduced in [15].
Independently, [7] introduced weak morphisms of CwFs and used the notion
Colin Zwanziger: zwanzig@cmu.edu, colinzwanziger.com

1In order to encompass adjoint type theory [4] [19] [11], we extend use of the term “modal” even to
partially-defined type operators.
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to interpret a particular modal dependent type theory. (Henceforth, we drop
saying “weak”.)
Intuitively, whereas ordinary type theory is interpreted in certain structured

categories, such as natural models, modal type theory should be interpreted
using diagrams of such categories, the constituent functors of which are used
to interpret the (partial) modal operators. By interpreting modal type theories
using morphisms of natural models, we are able to maintain (at least for the
type theories treated here and, evidently, in [7]) this intuitive picture of what
a model should be, abstracting away from the complexities of the type theories
and their interpretations, which are, as yet, treated in a more ad hoc fashion.
We will suggest semantics using morphisms of natural models for two re-

lated type theories, one comonadic and one adjoint. Our adjoint type theory,
AdjTT, gives dependent analogs of the adjoint operators in [4]. Since its inter-
pretation is the more straightforward, AdjTT is prioritized. We introduce the
notion of a geometric morphism of natural models, and show how to use it to
interpret AdjTT. Our comonadic type theory, CoTT, pulls out the comonadic
operator of [22], and also closely follows [14]. We suggest a notion of Carte-
sian comonad on a natural model to model CoTT. These are apparently the
�rst suggestions for modeling fully dependent incarnations of these adjoint
and comonadic operators.
Though discussion of examples is deferred to later work, we note that nu-

merous ordinary models of dependent type theory do extend to models of both
CoTT and AdjTT. These include geometric (so-called “cohesive”) examples
such as simplicial sets and the groupoid model of type theory [10], as well as
examples from Kripke semantics of modal logic.2

Requisite notions from the theory of natural models are discussed in Section
2. Discussion of AdjTT and CoTT and their respective natural model semantics
follows in Sections 3 and 4.

2Apropos of this last example, we also note that a motivation for the present work is the particular
relevance to linguistics and philosophy. The intensional logic of Montague [13], which is of foundational
importance in natural language semantics and philosophy of language, is an early example of a comonadic
type theory [26]. Both CoTT and AdjTT encode a comonad in the dependently-typed setting, and so
represent dependently-typed analogs of intensional logic. They thus integrate both the dependently-typed
approach to natural language semantics [23] [18] and the classical intensional logic approach. Applications
to natural language are developed in other work by the author [27] [28].
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2 Natural Model Semantics

We will require the notions of natural model and of morphism of natural mod-
els.

2.1 Natural Models

Natural models are an equivalent, category-theoretic formulation of categories
with families [8], which provide a popular categorical semantics for dependent
type theory. The natural model formulation was noted independently in [1]
and [9].

Definition 1. A natural model consists of

• a category C

• a distinguished terminal object 1 ∈ C

• presheaves Ty,Tm : Cop → Set and a natural transformation p : Tm→ Ty

such that p is representable.

To unpack this, we recall the de�nition of a representable natural transfor-
mation of presheaves (cf. [17]).

Definition 2. Given presheaves P,Q : Cop → Set and a natural transformation α : Q→ P ,

α is said to be representable if for any C ∈ C and x ∈ P (C), there exists px : D → C and

y ∈ Q(D) such that the following square is a pullback.

yD Q

yC P

y px

y

y

α

x .

Below, as here, we will freely use the Yoneda lemma to con�ate presheaf
elements x ∈ P (C) with the corresponding map x : yC → P . A natural model
whose underlying category is Cmay simply be referred to as C. Given a natural
model C, its constituent data will be written C, 1C,TyC, etc.
A natural model presents a CwF, with C as the category of contexts and

substitutions and Ty and Tm as the presheaves of types and terms. The repre-
sentability condition on p corresponds to the comprehension axiom for a CwF.
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For, given a “type” A ∈ Ty(Γ), representability ensures we have some Γ.A ∈ C,
pA : Γ.A → Γ, and vA : y(Γ.A) → Tm which provide the comprehension of A.
Figure 1 shows this comprehension of a type A in a natural model.

y(Γ.A) Tm

y Γ Ty

y pA

y

vA

p

A

Figure 1: The Comprehension of a Type A

Furthermore, given a “term” of A ∈ Ty(Γ), i.e. a ∈ Tm(Γ) such that p ◦ a = A,
we may form a corresponding section of pA, which we denote sa : Γ → Γ.A,
using the pullback property of y pA. The reader may �nd greater detail and
discussion in [2].

2.2 Morphisms of Natural Models

We turn to morphisms of natural models, the theory of which is developed in
[15]. Roughly, a morphism maps (some) types to types, preserving the con-
text extension/comprehension operation. We will take morphisms as the basic
semantic objects corresponding to modal type operators.
In order to de�ne morphisms of natural models, we will use a notion of lax

morphism as auxiliary. The de�nition of lax morphism is as follows:

Definition 3. A lax morphism3 of natural models F : C→ D consists of:

• a functor, also denoted F : C→ D, between the underlying categories

• a natural transformation φTy : F! TyC → TyD

• a natural transformation φTm : F! TmC → TmD

such that the following diagram commutes:

3This is the definition of premorphism given by [15], except that here, distinguished terminal objects
need not be preserved. The author of [15] suggested via [16] the term “lax morphism” for this modified
notion.
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F! TmC TmD

F! TyC TyD

F!pC

φTm

pD

φTy .

Here, F! : SetCop → SetDop is the left Kan extension functor, so we have to hand
an adjunction F! a F ∗, where F ∗ denotes precomposition by F .
To make more sense of the de�nition of lax morphism, we use the following

notation:

Convention 4. Given a lax morphism F : C→ D, and a type A ∈ Ty(Γ) in context Γ ∈ C,

we write F/A for the composite

yFΓ ∼= F! y Γ F! TyC TyD
F!A φTy .

Similarly, given a term a ∈ Tm(Γ), we write F/a for the composite

yFΓ ∼= F! y Γ F! TmC TmD
F!a φTm .

One may think of F/A and F/a as the results of applying the morphism F to A
and a. These operations are implicated in the interpretation of (respectively)
formation and introduction rules for modal type operators.
A morphism is, of course, to be a lax morphism for which relevant compar-

ison maps are isomorphisms. We set up the precise statement now.

Definition 5. A lax morphism F : C→ D is said to preserve the (distinguished) terminal

object whenever the unique morphism ! : F (1C)→ 1D is an isomorphism.

Lemma 6. Let F : C → D be a lax morphism. Then, given a type A ∈ TyC(Γ) in

context Γ ∈ C, there is a unique comparison map τA : F (Γ.A) → FΓ.(F/A) such that

FpA = pF/A◦τA and F/vA = vF/A◦y(τA), i.e., such that the following diagram commutes:

y(F (Γ.A))

y(FΓ.(F/A)) TmD

y(FΓ) TyD

y(τA)

y(FpA)

F/vA

y(pF/A)

y

vF/A

pD

F/A .
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Emp.· 
∆  B type

Ext.D∆, u :: B 
∆, u :: A,∆′ 

Var.D∆, u :: A,∆′  u : A

∆  Lock∆ | · `
∆ | Γ ` B type

Ext.C∆ | Γ, x : B `
∆ | Γ, x : A,Γ′ `

Var.C∆ | Γ, x : A,Γ′ ` x : A

Table 1: The Context Rules for AdjTT

Proof. Follows from the pullback property of y(FΓ.(F/A)).

Any lax morphism F is thus said to laxly preserve context extension. Further-
more, we have following de�nition:

Definition 7. Let F : C → D be a lax morphism. Then F is said to preserve context

extension if, for each type A ∈ TyC(Γ) in each context Γ ∈ C, the comparison map

τA : F (Γ.A)→ F (Γ).(F/A) is an isomorphism.

Finally, we are equipped to de�ne a morphism of natural models.

Definition 8. A lax morphism F : C → D of natural models that preserves context

extension and terminal objects is called a morphism of natural models.4

3 Adjoint Type Theory

We now proceed to describe the adjoint dependent type theory AdjTT and in-
terpret it using morphisms of natural models.

3.1 Syntax

3.2 Provenance of AdjTT

Whereas a type theory ordinarily describes a single category, several type the-
ories have generalized this picture to describe at once multiple categories and
adjunctions between them. These go by names such as “adjoint calculus” [5],
“adjoint logic” [19], and “call-by-push-value” [11]; here, the term term “ad-
joint type theory” is used.
Adjoint simple type theory has recently been treated in the great generality

of arbitrary diagrams of adjunctions [12]. The extension of that approach to

4This is the definition of weak morphism given and explored by [15], except that here, terminal objects
need not be preserved strictly. The notion of morphism of CwFs given by [7] (independently of [15])
matches the present approach.
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∆  B type
L-Form.∆ | Γ ` LB type

∆  t : B
L-Intro.

∆ | Γ ` tL : LB

∆ | Γ, x : LA ` B type ∆ | Γ ` s : LA ∆, u :: A | Γ ` t : B[uL/x]
L-Elim.

∆ | Γ ` (let uL := s in t) : B[s/x]

∆ | Γ, x : LA ` B type ∆  s : A ∆, u :: A | Γ ` t : B[uL/x]
L-β-Conv.

∆ | Γ ` (let uL := sL in t) ≡ t[s/u] : B[sL/x]

∆ | Γ, x : LA ` B type ∆ | Γ ` s : LA ∆ | Γ, x : LA ` t : B
L-η-Conv.

∆ | Γ ` (let uL := s in t[uL/x]) ≡ t[s/x] : B[s/x]

Table 2: The Rules for L

dependent types is apparently the subject of intense investigation by its authors
and collaborators.
Here, in AdjTT, we treat only the case of a single adjunction, but for de-

pendent types. This amounts to producing dependently-typed analogs of the
adjoint operators of [4], and extends the partial result of [25]. While perhaps
novel, our rule for the left adjoint operator L is adapted rather straightforwardly
from the comonadic operator [ of [22].

3.2.1 AdjTT

Contexts and Judgments We now delineate AdjTT. This type theory is thought
of as describing two categories interacting via an adjunction. Accordingly, we
have two kinds of types, which we call D-types and C-types. A variable as-
sumption of a D-type is denoted

u :: A ,

and lists of D-typed variables are denoted ∆,∆′, .... On the other hand, a vari-
able assumption of a C-type is denoted

x : A ,

and lists of C-typed variables are denoted Γ,Γ′, .... Similarly, we haveD-contexts
and C-contexts. The judgment that ∆ is a D-context is denoted

∆  ,

whereas the judgment that ∆ | Γ is a C-context is denoted

∆ | Γ ` .
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∆ | · ` B type
R-Form.∆  RB type

∆ | · ` t : B
R-Intro.

∆  tR : RB
∆  t : RB

R-Elim.∆ | Γ ` tR : B

∆ | · ` t : B
R-β-Conv.

∆ | Γ ` (tR)R ≡ t : B
∆  t : RB R-η-Conv.

∆  (tR)R ≡ t : B

Table 3: The Rules for R

Note here that C-contexts can include assumptions ofD-type, which are thought
of as tacitly transported by the left adjoint L to C-types. As suggested by the
ordering of ∆ | Γ, C-types can depend on D-types, but not vice versa. Accord-
ingly, we have typing judgments for D-terms

∆  t : B

and C-terms
∆ | Γ ` t : B .

A D- (resp. C-)term may be substituted only for a D- (resp. C-)variable,
though in any context. The rules for contexts and variables are presented in
Table 1.

The Operators L and R The calculus includes a pair of type operators L and R.
Of course, L is thought of as left adjoint to R, and it takes D-types to C-types,
while R does the opposite. The rules for L and R are presented in Tables 2 and
3.
The L-Elim. rule crystallizes the idea that D-assumptions u :: A in a C-

context are akin to C-assumptions x : LA; we can “substitute” a term s : LA

for the assumption u :: A almost as if it were an assumption x : LA. However,
as the L-β-Conv. rule indicates, this explicit let-substitution for a D-variable
only reduces to an ordinary substitution when this s : LA indeed comes directly
from a D-term. The rules R-Form. and R-Intro. are notable in that they apply
only when no C-assumptions are present. These rules thus are not guaranteed
to apply after a let-substitution, nor do they commute with let-substitution.
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3.3 Semantics

3.3.1 Geometric Morphisms

Our notion of model for AdjTT takes an appealingly simple form. We purloin
a topos-theoretic term for this structure:

Definition 9. Given natural models E and F , a geometric morphism f : E → F from E to

F consists of

• a morphism of natural models f∗ : E → F and

• a morphism of natural models f∗ : F → E

such that there is an adjunction f∗ a f∗ of the underlying functors.

Remark 10. The representable natural transformation pE : TmE → TyE of a natural

model E is somewhat analogous to a classifying morphism of a (higher) toposes, meaning

E is itself somewhat analogous to a topos. We note that the requirement that f∗ be a

morphism of natural models will serve a similar role in our interpretation of modal type

theory to the requirement that the inverse image of a geometric morphism (of toposes)

preserve finite limits in the interpretation of modal logic (cf. [20]). A geometric morphism

of natural models is thus something more than “an adjunction between natural models”,

just as a geometric morphism of toposes is something more than an adjunction between

toposes.

For the rest of Section 3, we work with a geometric morphism f : E → F of
natural models, and, for readability, we write R for the morphism f∗ and L for
the morphism f∗. We now introduce some notation to aid in the interpretation
of AdjTT in a geometric morphism.

Definition 11. Let ∆ ∈ F . Then

• RA :≡ (R/A) ◦ y(η∆) : y ∆→ TyF , where A : y(L∆)→ TyE ,

• Ra :≡ (R/a) ◦ y(η∆) : y ∆→ TmF , where a : y(L∆)→ TmE ,

• LA :≡ (L/A) : y(L∆)→ TyE , where A : y ∆→ TyF , and

• La :≡ (L/a) : y(L∆)→ TmE , where a : y ∆→ TmF .

It is this new R(−), not R/(−), which will interpret the formation and intro-
duction rules for the type operator R of AdjTT.
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3.3.2 Interpretation

With our notion of geometric morphism, we now proceed to interpret AdjTT.
While the interpretation for the most part goes as expected, we note that,

whereas a D-context ∆ is interpreted as an object J∆K of F, the more complex
C-context ∆ | Γ is interpreted not as an object of E, but as an object J∆ | ΓK of
the slice category E ↓ LJ∆K. The objects of E ↓ LJ∆K are pairs of form (E, f :

E → LJ∆K). We write α0 and α1 for the elements of such a pair α. Despite this
complication, the interpretation of a dependent type ∆ | Γ ` A will simply lie
in TyE(J∆ | ΓK0).
The partial interpretation function J−K is now delineated.5

Definition 12. The partial interpretation function J−K is given by recursion on raw syntax

as follows:

(Emp.). J·K = 1F ∈ F

(Ext.D). J∆, u :: BK = J∆K.JBK ∈ F

(Var.D). J∆, u :: A  u : AK = vJAK ∈ TmF (J∆K.JAK)

(Lock). J∆ | ·K = (LJ∆K, idLJ∆K) ∈ E ↓ LJ∆K

(Ext.C). J∆ | Γ, x : BK = (J∆ | ΓK0.JBK, J∆ | ΓK1 ◦ pJBK) ∈ E ↓ LJ∆K

(Var.C). J∆ | Γ, x : A ` x : AK = vJAK ∈ TmE(J∆ | ΓK0.JAK)

(L-Form.). J∆ | · ` LBK = LJBK ∈ TyE(LJ∆K)

(L-Intro.). J∆ | · ` tL : LBK = LJtK ∈ TmE(LJ∆K)

(L-Elim.). J∆ | · ` (let uL := r in t) : B[r/x]K = JtK ◦ y(sJrK) ∈ TmE(LJ∆K)

(R-Form.). J∆  RBK = RJBK ∈ TyF (J∆K)

(R-Intro.). J∆  tR : RBK = RJtK ∈ TmF (J∆K)

(R-Elim.). J∆ | · ` tR : BK = vJBK ◦ y(εLJ∆K
JBK ◦ sLJtK) ∈ TmE(LJ∆K)6

This interpretation is sound in the following senses.

5For readability, we omit the interpretation of judgments with fully weakened contexts.
6Here, εLJ∆K

JBK : LJ∆K.LRJBK → LJ∆K.JBK is the “indexed counit” induced by the adjunction. This
unwinds as εLJ∆K

JBK ≡ εLJ∆K.JBK ◦ π2 where π2 : LJ∆K.LRJBK → LR(LJ∆K.JBK) is the morphism which,
together with pLRJBK, exhibits y(LJ∆K.LRJBK) as the pullback of y(LR(LJ∆K.JBK)) along y(LηJ∆K).
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Proposition 13. The following facts hold:

• When ∆ , also J∆K ∈ F .

• When ∆ | Γ `, also J∆ | ΓK ∈ E ↓ LJ∆K.

• When ∆  B type, also JBK ∈ TyF (J∆K).

• When ∆ | Γ ` B type, also JBK ∈ TyE(J∆ | ΓK0).

• When ∆  t : B, also JtK ∈ TmF (J∆K) and pF ◦ JtK = JBK.

• When ∆ | Γ ` t : B, also JtK ∈ TmE(J∆ | ΓK0) and pE ◦ JtK = JBK.

• When ∆ ≡ ∆′ , also J∆K = J∆′K and when (∆ | Γ) ≡ (∆′ | Γ′) `, also J∆ | ΓK =

J∆′ | Γ′K.

• When ∆  B ≡ B′ type or ∆ | Γ ` B ≡ B′ type, also JBK = JB′K.

• When ∆  t ≡ t′ : B or ∆ | Γ ` t ≡ t′ : B, also JtK = Jt′K.

4 Comonadic Type Theory

Beyond adjoint dependent type theory, morphisms of natural models may also
be used to model comonadic dependent type theory. We outline such a type
theory, CoTT, and suggest a natural model semantics.

4.1 Syntax

4.1.1 Provenance of CoTT

The system CoTT simply pulls out the comonadic operator from the more com-
plex system of [22], which was motivated by geometric models of homotopy
type theory. Rules for a dependent comonadic operator were �rst given in [14].

4.1.2 CoTT

Tables 4 and 5 describe the type theory CoTT.
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Emp.
· | · `

∆ | · ` B type
Ext.[∆, u :: B | · `

∆, u :: A,∆′ | Γ `
Var.[∆, u :: A,∆′ | Γ ` u : A

∆ | Γ ` B type
Ext.∆ | Γ, x : B `

∆ | Γ, x : A,Γ′ `
Var.∆ | Γ, x : A,Γ′ ` x : A

Table 4: The Context Rules for CoTT

∆ | · ` B type
[-Form.∆ | Γ ` [B type

∆ | · ` t : B
[-Intro.

∆ | Γ ` t[ : [B

∆ | Γ, x : [A ` B type ∆ | Γ ` s : [A ∆, u :: A | Γ ` t : B[u[/x]
[-Elim.

∆ | Γ ` (let u[ := s in t) : B[s/x]

∆ | Γ, x : [A ` B type ∆ | · ` s : A ∆, u :: A | Γ ` t : B[u[/x]
[-β-Conv.

∆ | Γ ` (let u[ := s[ in t) ≡ t[s/u] : B[s[/x]

∆ | Γ, x : [A ` B type ∆ | Γ ` s : [A ∆ | Γ, x : [A ` t : B
[-η-Conv.

∆ | Γ ` let u[ := s in t[u[/x] ≡ t[s/x] : B[s/x]

Table 5: The Rules for [

4.2 Semantics

4.2.1 Cartesian Comonads

Our notion of model for CoTT takes an appealingly simple form:

Definition 14. Let [ : E → E be an endomorphism on a natural model E . This [ is said to

be a Cartesian comonad on E when its underlying functor is a comonad.

Remark 15. The requirement that [ be a morphism of natural models serves a similar role

in our interpretation of modal dependent type theory to the requirement of product- or

finite limit-preservation in the interpretation of modal simple type theory and modal logic

(cf. [6], [26]). A Cartesian comonad on a natural model is thus something more than “a

comonad on a natural model”.

We now introduce some notation of aid in the interpretation of CoTT. We
write E[ for the category of coalgebras for [, U : E[ → E for the forgetful functor,
and K : E → E[ for the cofree functor. As the name suggests, we have U a K.
This facilitates the following de�nition:
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Definition 16. Let ∆ ∈ E[. Then

• [A :≡ ([/A) ◦ y(Uη∆) : y(U∆)→ Ty, where A : y(U∆)→ Ty, and

• [a :≡ ([/a) ◦ y(Uη∆) : y(U∆)→ Tm, where a : y(U∆)→ Tm.

These de�ned operations interpret the rules [-Form. and [-Intro., respec-
tively. The interpretation of CoTT, omitted due to space constraints, proceeds
along comparable lines to that for AdjTT.

4.2.2 Comparison to Other Work

The lecture [21] describes independent work towards modeling a comonadic
dependent type theory, in which the comonad is required to be idempotent
(that is, [[A ' [A, for any type A). That work aims to include comonadic oper-
ators in the context of model category theory, and makes the observation that
such operators do not in general take �brations to �brations. This raises the
prospect that in some models important in homotopy type theory, [(∆.A) will
not in general be isomorphic to ([∆).([/A): the former may not be a �bration,
whereas ([∆).([/A), as a comprehension, will be. Thus, the requirement that [
be a morphism of natural models (as opposed to, say, a lax morphism) may be
too strong for some models.
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